Skip Nav | Home | Mobile | Editorial Guidelines | Mission Statement | About Us | Contact | Help | Security | Support Us

World

Yin-Yang Mathematical formula by Shishkov

Sergey Shishkov | 23.06.2004 05:20 | European Social Forum | Analysis | World

The first in the World formula of Yin-Yang

Scientific Approach to the Yin-Yang Geometry by Sergey Yu. Shishkov
 http://www.tao.nm.ru

(RUSSIA,  Shishkovser@rambler.ru) Here is given (below) the most generalized definition of the astroid-like hypocycloid as the trajecory of a point P of a rotating with angular velocity "omega1"=1 circle of radius "radius1"=a, with centre of which also being rotating around the origin by the circle of radius "radius2"=1-a , and angular velocity "omega2"=-3, so that"radius1" +"radius2"=1, and "omega2"/"omega1" =-3. Then for coordinates X[t], Y[t] of this point P we have: X[t]=(a)*cos(t)+(1-a)*cos(3*t); Y[t]=(a)*sin(t)-(1-a)*sin(3*t); 1-X[t]^2-Y[t]^2=factor(simplify(expand(1-((a)*cos(t)+(1-a)*cos(3 *t))^2-((a)*sin(t)-(1-a)*sin(3*t))^2)))=16*a*cos(t)^2*(cos(t)-1) *(cos(t)+1)*(-1+a)=16*a*cos(t)^2*(cos(t)^2-1)*(-1+a)=16*a*cos(t) ^2*(sin(t)^2)*(1-a)=FULL SQUARE!=> If Z[t]=4*cos(t)*sin(t)*(a*(1-a))^(1/2), then X[t]^2+Y[t]^2+z[t]^2=1 ;(i.e., For every time t {X[t],Y[t],Z[t]} is on the unit SPHERE!!!). With different values of the parameter a we obtain the whole class of astroid-like hypocycloids with FOUR PARTS. Below is given the Maple 5.4 Text programm for plotting of these trajectories.; > a=0.6339;plot([(a)*cos(t)+(1-a)*cos(3*t),(a)*sin(t)-(1-a)*sin(3*t) ,t=0..2*Pi]); plot([(a)*cos(t)+(1-a)*cos(3*t),4*cos(t)*sin(t)*(a*(1-a))^(1/2), t=0..2*Pi]); plot([(a)*sin(t)-(1-a)*sin(3*t),4*cos(t)*sin(t)*(a*(1-a))^(1/2), t=0..2*Pi]); Look also in Maple 5: > factor(simplify(expand(1-((b)*cos(t)+(1-b)*cos(3*t))^2-((b)*sin( t)-(1-b)*sin(3*t))^2))); > The Optimal Value for the parametr a is a=(1/2)*(3-3^(1/2))=0.6339, as will be shown elsewher;-). It corresponds to the most "BEAUTIFUL" 3D-hypo-astroid. Such a configuration may serve also as the Yin-Yang MAGNETIC TRAP for adiabatic freezing of Bose condensate in modern Atomic Beam Lasers and for hot plazma in thermonuclear fusion systems. However, this is beyond the scope of this site. Let us call this unique value of the parameter a as "THE YIN-YANG PLATINUM SECTION", analogous to the famous "GOLDEN SECTION GS" (i.e.,GS=1/2*5^(1/2)-1/2=0.6180339887), suggested by Leonardo da Vinci! > [>a:=0.6339;plot([(a)*cos(t)+(1-a)*cos(3*t),(a)*sin(t)-(1-a)*sin (3*t),t=0..2*Pi]); plot([(a)*cos(t)+(1-a)*cos(3*t),4*cos(t)*sin(t)*(a*(1-a))^(1/2), t=0..2*Pi]); plot([(a)*sin(t)-(1-a)*sin(3*t),4*cos(t)*sin(t)*(a*(1-a))^(1/2), t=0..2*Pi]);

Sergey Shishkov
- e-mail: Shishkovser@rambler.ru
- Homepage: http://www.tao.nm.ru

Comments

Display the following comment

  1. Ho-hum. — Hoom

Publish

Publish your news

Do you need help with publishing?

/regional publish include --> /regional search include -->

World Topics

Afghanistan
Analysis
Animal Liberation
Anti-Nuclear
Anti-militarism
Anti-racism
Bio-technology
Climate Chaos
Culture
Ecology
Education
Energy Crisis
Fracking
Free Spaces
Gender
Globalisation
Health
History
Indymedia
Iraq
Migration
Ocean Defence
Other Press
Palestine
Policing
Public sector cuts
Repression
Social Struggles
Technology
Terror War
Workers' Movements
Zapatista

Kollektives

Birmingham
Cambridge
Liverpool
London
Oxford
Sheffield
South Coast
Wales
World

Other UK IMCs
Bristol/South West
London
Northern Indymedia
Scotland

Server Appeal Radio Page Video Page Indymedia Cinema Offline Newsheet

secure Encrypted Page

You are viewing this page using an encrypted connection. If you bookmark this page or send its address in an email you might want to use the un-encrypted address of this page.

If you recieved a warning about an untrusted root certificate please install the CAcert root certificate, for more information see the security page.

IMCs


www.indymedia.org

Projects
print
radio
satellite tv
video

Africa

Europe
antwerpen
armenia
athens
austria
barcelona
belarus
belgium
belgrade
brussels
bulgaria
calabria
croatia
cyprus
emilia-romagna
estrecho / madiaq
galiza
germany
grenoble
hungary
ireland
istanbul
italy
la plana
liege
liguria
lille
linksunten
lombardia
madrid
malta
marseille
nantes
napoli
netherlands
northern england
nottingham imc
paris/île-de-france
patras
piemonte
poland
portugal
roma
romania
russia
sardegna
scotland
sverige
switzerland
torun
toscana
ukraine
united kingdom
valencia

Latin America
argentina
bolivia
chiapas
chile
chile sur
cmi brasil
cmi sucre
colombia
ecuador
mexico
peru
puerto rico
qollasuyu
rosario
santiago
tijuana
uruguay
valparaiso
venezuela

Oceania
aotearoa
brisbane
burma
darwin
jakarta
manila
melbourne
perth
qc
sydney

South Asia
india


United States
arizona
arkansas
asheville
atlanta
Austin
binghamton
boston
buffalo
chicago
cleveland
colorado
columbus
dc
hawaii
houston
hudson mohawk
kansas city
la
madison
maine
miami
michigan
milwaukee
minneapolis/st. paul
new hampshire
new jersey
new mexico
new orleans
north carolina
north texas
nyc
oklahoma
philadelphia
pittsburgh
portland
richmond
rochester
rogue valley
saint louis
san diego
san francisco
san francisco bay area
santa barbara
santa cruz, ca
sarasota
seattle
tampa bay
united states
urbana-champaign
vermont
western mass
worcester

West Asia
Armenia
Beirut
Israel
Palestine

Topics
biotech

Process
fbi/legal updates
mailing lists
process & imc docs
tech